Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257519

RESUMO

The aims of this study were to investigate the potential of utilising molecularly imprinted polycarbazole layers to detect highly toxic picric acid (PA) and to provide information about their performance. Quantum chemical calculations showed that strong interactions occur between PA and carbazole (bond energy of approximately 31 kJ/mol), consistent with the theoretical requirements for effective molecular imprinting. The performance of the sensors, however, was found to be highly limited, with the observed imprinting factor values for polycarbazole (PCz) layers being 1.77 and 0.95 for layers deposited on Pt and glassy carbon (GC) electrodes, respectively. Moreover, the molecularly imprinted polymer (MIP) layers showed worse performance than unmodified Pt or GC electrodes, for which the lowest limit of detection (LOD) values were determined (LOD values of 0.09 mM and 0.26 mM, respectively, for bare Pt and MIP PCz/Pt, as well as values of 0.11 mM and 0.57 mM for bare GC and MIP PCz/GC). The MIP layers also showed limited selectivity and susceptibility to interfering agents. An initial hypothesis on the reasons for such performance was postulated based on the common properties of conjugated polymers.

2.
Molecules ; 28(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37630395

RESUMO

The aims of this study were to investigate the potential of using barium peroxide as an environmentally friendly oxidising agent, to evaluate the composition of the combustion products of the developed pyrotechnic delay compositions (PDCs) and to provide information about the impact of the utilised metallic fuel (Mg, Al, Fe or Cu) on the properties of those PDCs. The PDCs exhibited acceptable friction and impact sensitivity values. This allowed conducting further experiments, e.g., determining the linear combustion velocity of the PDCs as a function of oxygen balance (OB). Based on the composition of the post-combustion residues, determined by Raman spectroscopy and SEM-EDS, an initial mechanism for the combustion of the developed PDCs was proposed.

3.
Molecules ; 28(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570606

RESUMO

Ammonium nitrate-fuel oil (ANFO) explosives are inexpensive and readily produced, but are highly prone to misfires, with the remaining explosive being a significant risk and environmental contaminant. In this work, studies on various additives, such as selected perchlorates and inorganic peroxides, which are intended to lower the susceptibility of ANFO to misfires by increasing its sensitivity to shock, have been conducted. These studies showed the viability of using these additives in ANFO, allowing for conducting shock wave sensitivity tests for bulk charges in the future. We investigated the effects of introducing these additives into ANFO (on its sensitivity), as well as thermal and energetic properties. We observed minor increases in friction and impact sensitivity, as well as a moderate reduction in the decomposition temperature of the additive-supplemented ANFO in comparison to unmodified ANFO.

4.
Molecules ; 28(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570712

RESUMO

This work aims to investigate the combustion mechanism for a pyrotechnic delay composition (PDC), consisting of zinc powder as a fuel and KMnO4 as an oxidising agent. For this purpose, the compositions were thermally conditioned at several set temperatures, chosen based on our previous work. Tests were also performed for post-combustion residues obtained via combustion of the PDCs in a manometric bomb. The samples were examined by scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffractometry (XRD). Furthermore, the obtained results were correlated with previous studies by the authors and compared with data available in the literature. On the basis of tests carried out for thermally conditioned samples, a combustion mechanism was determined for Zn/KMnO4 as a function of temperature. The results show that the combustion process dynamics are independent of equilibrium ratio and limited mainly by diffusion of liquid fuel into the solid oxidising agent. Moreover, it has been revealed that Raman spectroscopy can be effectively used to determine combustion mechanisms for pyrotechnic compositions.

5.
Molecules ; 28(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570756

RESUMO

The aim of this article is to compare rocket propellants containing a traditional binder (hydroxyl-terminated polybutadiene) and an energetic binder (glycidyl azide polymer), as well as a perchlorate oxidising agent and a "green" one, i.e., ammonium perchlorate and phase-stabilised ammonium nitrate. We have outlined the effects of individual substances on the sensitivity parameters and decomposition temperature of the produced solid propellants. The linear combustion velocity was determined using electrical methods. Heats of combustion for the propellant samples and the thermal decomposition features of the utilised binders were investigated via differential scanning calorimetry (DSC). Activation energy values for the energetic decomposition of the propellants were determined via the Kissinger method, based on DSC measurements at varied heating rates.

6.
Molecules ; 28(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37630209

RESUMO

The issues of safety and its impact on both human health and the environment are on-going challenges in the field of explosives (EXs). Consequently, environmentally-friendly EXs have attracted significant interest. Our previous work, dedicated to on-site mixed (OSM) EXs utilising concentrated hydrogen peroxide (HTP) as an oxidising agent, revealed that the gradual decomposition of HTP may be harnessed as an additional safety measure, e.g., protection from theft. The rate of HTP decomposition is dependent on the OSM components, but this dependence is not straightforward. Relevant information about the decomposition of HTP in such complex mixtures is unavailable in literature. Consequently, in this work, we present a more detailed picture of the factors influencing the dynamics of HTP decomposition in EXformulations. The relevant measurement and validation methodology is laid out and the most relevant factors for determining the rate of HTP decomposition are highlighted. Among these, the choice of auxiliary oxidising agent is of particular relevance and it can be seen that the choice to use ammonium nitrate (AN), made in previous works dealing with HTP-based EXs, is sub-optimal in terms of maintaining the stability of HTP. Another important finding is that glass microspheres are not as inert to HTP as would be expected, as replacing them with polymer microspheres significantly slowed the decomposition of HTP in the investigated OSM samples.

7.
ACS Appl Mater Interfaces ; 15(16): 19863-19876, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37041124

RESUMO

Dental implants have become a routine, affordable, and highly reliable technology to replace tooth loss. In this regard, titanium and its alloys are the metals of choice for the manufacture of dental implants because they are chemically inert and biocompatible. However, for special cohorts of patients, there is still a need for improvements, specifically to increase the ability of implants to integrate into the bone and gum tissues and to prevent bacterial infections that can subsequently lead to peri-implantitis and implant failures. Therefore, titanium implants require sophisticated approaches to improve their postoperative healing and long-term stability. Such treatments range from sandblasting to calcium phosphate coating, fluoride application, ultraviolet irradiation, and anodization to increase the bioactivity of the surface. Plasma electrolytic oxidation (PEO) has gained popularity as a method for modifying metal surfaces and delivering the desired mechanical and chemical properties. The outcome of PEO treatment depends on the electrochemical parameters and composition of the bath electrolyte. In this study, we investigated how complexing agents affect the PEO surfaces and found that nitrilotriacetic acid (NTA) can be used to develop efficient PEO protocols. The PEO surfaces generated with NTA in combination with sources of calcium and phosphorus were shown to increase the corrosion resistance of the titanium substrate. They also support cell proliferation and reduce bacterial colonization and, hence, lead to a reduction in failed implants and repeated surgeries. Moreover, NTA is an ecologically favorable chelating agent. These features are necessary for the biomedical industry to be able to contribute to the sustainability of the public healthcare system. Therefore, NTA is proposed to be used as a component of the PEO bath electrolyte to obtain bioactive surface layers with properties desired for next-generation dental implants.


Assuntos
Implantes Dentários , Titânio , Humanos , Titânio/química , Ácido Nitrilotriacético , Propriedades de Superfície , Oxirredução , Metais , Ligas , Eletrólitos , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-36892008

RESUMO

New conductive materials for tissue engineering are needed for the development of regenerative strategies for nervous, muscular, and heart tissues. Polycaprolactone (PCL) is used to obtain biocompatible and biodegradable nanofiber scaffolds by electrospinning. MXenes, a large class of biocompatible 2D nanomaterials, can make polymer scaffolds conductive and hydrophilic. However, an understanding of how their physical properties affect potential biomedical applications is still lacking. We immobilized Ti3C2Tx MXene in several layers on the electrospun PCL membranes and used positron annihilation analysis combined with other techniques to elucidate the defect structure and porosity of nanofiber scaffolds. The polymer base was characterized by the presence of nanopores. The MXene surface layers had abundant vacancies at temperatures of 305-355 K, and a voltage resonance at 8 × 104 Hz with the relaxation time of 6.5 × 106 s was found in the 20-355 K temperature interval. The appearance of a long-lived component of the positron lifetime was observed, which was dependent on the annealing temperature. The study of conductivity of the composite scaffolds in a wide temperature range, including its inductive and capacity components, showed the possibility of the use of MXene-coated PCL membranes as conductive biomaterials. The electronic structure of MXene and the defects formed in its layers were correlated with the biological properties of the scaffolds in vitro and in bacterial adhesion tests. Double and triple MXene coatings formed an appropriate environment for cell attachment and proliferation with mild antibacterial effects. A combination of structural, chemical, electrical, and biological properties of the PCL-MXene composite demonstrated its advantage over the existing conductive scaffolds for tissue engineering.

9.
J Funct Biomater ; 14(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36662081

RESUMO

The characteristics such as microtopography, physical and chemical properties influence the behavior of an implant in a soft tissue. Anodization-as a potent method of titanium alloy surface modification-of the transgingival abutment or healing screw, has achieved some improvement. One of the possible surface treatment method is low-pressure radiofrequency oxygen plasma treatment. The aim of the study was to evaluate the chemical properties and cytocompatibility of the experimental surface. Titanium discs made of grade-23 titanium alloy (Ti-6Al-4V) anodized (A sample) with different voltage parameters (28, 67, 78, and 98 V) were included in the study. Half of the samples regarded as the "S" group were additionally treated with low-pressure radiofrequency oxygen plasma treatment. The surfaces were characterized using scanning electron microscopy, X-ray spectroscopy and Raman spectroscopy, and electrochemically investigated via a corrosion test. Furthermore, two cell lines were used, including the CHO-compatible reference line and a primary human fibroblast line for the MTT assay; direct (contact) cytotoxicity of the materials was tested with the cells, and the growth of fibroblasts on the surfaces of the different materials was tested. The morphology of the "S"-treated samples did not differ from the morphology of only-anodized samples. However, the oxygen concentration on the surface in that group slightly increased by about 1% as a result of post-trial treatment. The highest corrosion resistance was observed for both A-78 V and S-78 V samples. The cytotoxicity assay revealed no changes in cell morphology or vitality. The MTT test proved comparable culture viability among all groups; however, the "S" samples showed statistically significantly higher fibroblast proliferation and adhesion scores compared to the "A" samples. Through the in vitro study, the low-pressure radiofrequency oxygen plasma treatment of the anodized Ti-6Al-4V alloy presented itself as an auspicious option in the field of transgingival element surface modification of implants.

10.
Sensors (Basel) ; 22(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560194

RESUMO

Nitrogen dioxide (NO2) sensors utilising graft copolymers bearing poly(3-hexylthiophene) chains have been developed and investigated in terms of their operation parameters using different carrier gases (N2 or air) and in either dark conditions or with ultraviolet (UV) irradiation. Interestingly, sensor performance improved upon transition from N2 to air, with the inverse being true for most NO2 sensors. UV irradiation both improved sensor dynamics and stabilised the sensor electrical baseline, allowing sensors based on SilPEG to fulfil the requirements of sensing solutions used in industry (below 10% baseline drift after sensors reach saturation) and making them promising candidates for further development and applications. Based on conducted multi-variate experiments, an initial mechanism underlying the interplay of exposure to oxygen (present in air) and UV irradiation was postulated.


Assuntos
Gases , Dióxido de Nitrogênio , Tiofenos , Raios Ultravioleta
11.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365643

RESUMO

Energetic oxetanes, a group of energetic binders (EBs), are the focus of this review. We briefly introduce the role of binders and the difference between EBs and traditional "non-energetic" polymer binders, followed by a discussion of the synthesis and key properties of polyoxetanes. Priority is given to recent works, but a long-term perspective is provided where necessary, to illustrate the development of this field and the most relevant emerging trends. New reports on methods of obtaining oxetane polymers are presented; concerning the possibility of using a new catalyst, water: Al(C4H9)3, or the ratio of comonomers on the properties of the obtained binders. The synthesis of copolymers with the use of polymers with an oxetane ring and polyethers, polybutadiene terminated with hydroxyl groups and poly (3-difluoroaminomethyl-3-methyloxetane) is discussed. The latest developments in crosslinking reactions and crosslinking agents used are also described. The primary challenges faced by the field are identified and a perspective on the future development of polyoxetane EBs is presented.

12.
Materials (Basel) ; 15(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36143717

RESUMO

This article reports an investigation of the combustion of a binary pyrotechnic delay composition (PDC), consisting of zinc powder as fuel and KMnO4 as an oxidising agent, with zinc content ranging from 35 to 70 wt. %. The linear burning rate for delay compositions in the form of pyrotechnic fuses was investigated. Compositions with zinc content between 50 and 70 wt. % yielded burn rates in the range of 13.30-28.05 mm/s. The delay compositions were also tested for their sensitivity to friction and impact, where the compositions showed impact sensitivity in the range from 7.5 to 50 J and were insensitive to friction. Tests in a pressure bomb were carried out to determine the maximum overpressure and pressurisation rate. The thermal properties of the composition were evaluated by thermogravimetric analysis (DTA/TG). The morphology of the combustion products was studied by SEM technique, EDS analyses were used to investigate the element distribution of the post-combustion residues, providing an insight into the phenomena taking place during the combustion of the delay compositions.

13.
Materials (Basel) ; 15(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35591548

RESUMO

One of the groups of pyrotechnic compositions is thermite compositions, so-called thermites, which consist of an oxidant, usually in the form of a metal oxide or salt, and a free metal, which is the fuel. A characteristic feature of termite combustion reactions, apart from their extremely high exothermicity, is that they proceed, for the most part, in liquid and solid phases. Nanothermites are compositions, which include at least one component whose particles size is on the order of nanometers. The properties of nanothermites, such as high linear burning velocities, high reaction heats, high sensitivity to stimuli, low ignition temperature, ability to create hybrid compositions with other high-energy materials allow for a wide range of applications. Among the applications of nanothermites, one should mention igniters, detonators, microdetonators, micromotors, detectors, elements of detonation chain or elements allowing self-destruction of systems (e.g., microchips). The aim of this work is to discuss the preparation methods, research methods, direction of the future development, eventual challenges or problems and to highlight the applications and emerging novel avenues of use of these compositions.

14.
Sensors (Basel) ; 22(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35214229

RESUMO

The detection of chemicals is a fundamental issue of modern civilisation, however existing methods do not always achieve the desired sensitivity. Preconcentrators, which are devices that allow increasing the concentration of the intended analyte via e.g., adsorption/desorption, are one of the solutions for increasing the sensitivity of chemical detection. The increased detection sensitivity granted by preconcentration can be used to miniaturise detection instruments, granting them portability. The primary goal of this review is to report on and briefly explain the most relevant recent developments related to the design and applications of preconcentrators. The key design elements of preconcentrators and the emerging area of liquid-phase preconcentrators are briefly discussed, with the most significant applications of these devices being highlighted.


Assuntos
Testes Respiratórios , Compostos Orgânicos Voláteis , Adsorção , Testes Respiratórios/métodos
15.
Materials (Basel) ; 14(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34772180

RESUMO

The latest developments in solid propellants and their components are summarized. Particular attention is given to emerging energetic binders and novel, 'green' oxidizing agents and their use in propellant formulations. A brief overview of the latest reports on fuel additives is included. Finally, a summary of the state of the art and challenges in its development are speculated on.

16.
Materials (Basel) ; 14(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34640215

RESUMO

The current focus on both environmental and general safety is an important issue in the field of explosives. As such, environmentally-friendly explosives, based on hydrogen peroxide (HTP) as an oxidising agent, are of significant interest. These explosives can be designed to undergo self-deactivation, denying access to them by any unlawful third parties that may attempt scavenging blasting sites for any residual energetic materials. Such deactivation also improves blasting safety, as, after a set time, misfired charges no longer pose any explosive threat. In this work, we have designed HTP-based explosive formulations that undergo deactivation after approximately 12 h. To this effect, Al powders were used both as fuels and HTP decomposition promoters. The shock wave parameters and ability to perform mechanical work of the proposed explosive formulations are comparable to those of dynamites and bulk emulsion explosives, and the details of the changes of these parameters over time are also reported.

17.
Materials (Basel) ; 14(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799893

RESUMO

Conjugated polymers are widely used in the development of sensors, but even though they are sensitive and robust, they typically show limited selectivity, being cross-sensitive to many substances. In turn, molecular imprinting is a method involving modification of the microstructure of the surface to incorporate cavities, whose shape matches that of the "template"-the analyte to be detected, resulting in high selectivity. The primary goal of this review is to report on and briefly explain the most relevant recent developments related to sensors utilising molecularly imprinted polypyrrole layers and their applications, particularly regarding the detection of bioactive substances. The key approaches to depositing such layers and the most relevant types of analytes are highlighted, and the various trends in the development of this type of sensors are explored.

18.
Materials (Basel) ; 14(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572836

RESUMO

There are many methods for incorporating organic corrosion inhibitors to oxide coatings formed on aluminum alloys. However, typically they require relatively concentrated solutions of inhibitors, possibly generating a problematic waste and/or are time-/energy-consuming (elevated temperature is usually needed). The authors propose a three-step method of oxide layer formation on 6061-T651 aluminum alloy (AAs) via alternating current (AC) plasma electrolytic oxidation (PEO), impregnation with an 8-hydroxyquinoline (8-HQ) solution, and final sealing by an additional direct current (DC) polarization in the original PEO electrolyte. The obtained coatings were characterized by scanning electron microscopy, roughness tests, contact angle measurements, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Additionally, corrosion resistance was assessed by potentiodynamic polarization in a NaCl solution. Two types of the coating were formed (A-thicker, more porous at 440 mA cm-2; B-thinner, more compact at 220 mA cm-2) on the AA substrate. The 8-HQ impregnation was successful as evidenced by XPS. It increased the contact angle only for the B coatings and improved the corrosion resistance of both coating systems. Additional DC treatment destroyed superficially adsorbed 8-HQ. However, it served to block the coating pores (contact angle ≈ 80°) which improved the corrosion resistance of the coating systems. DC sealing alone did not bring about the same anti-corrosion properties as the combined 8-HQ impregnation and DC treatment which dispels the notion that the provision of the inhibitor was a needless step in the procedure. The proposed method of AA surface treatment suffered from unsatisfactory uniformity of the sealing for the thicker coatings, which needs to be amended in future efforts for optimization of the procedure.

19.
Mater Sci Eng C Mater Biol Appl ; 119: 111607, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321651

RESUMO

Plasma Electrolytic Oxidation (PEO) is as a promising technique to modify metal surfaces by application of oxide ceramic coatings with appropriate physical, chemical and biological characteristics. Therefore, objective of this research was to find the simplest settings, yet able to produce relevant bioactive implant surfaces layers on Ti implants by means of PEO. We show that an electrolyte containing potassium dihydrogen phosphate as a source of P and either calcium hydroxide or calcium formate as a source of Ca in combination with a chelating agent, ethylenediamine tetraacetic acid (EDTA), is suitable for PEO to deliver coatings with desired properties. We determined surface morphology, roughness, wettability, chemical and phase composition of titanium after the PEO process. To investigate biocompatibility and bacterial properties of the PEO oxide coatings we used microbial and cell culture tests. The electrolyte based on Ca(OH)2 and EDTA promotes active crystallization of apatites after PEO processing of the Ti implants. The PEO layers can increase electrochemical corrosion resistance. The PEO can be potentially used for development of bioactive surfaces with increased support of eukaryotic cells while inhibiting attachment and growth of bacteria without use of antibacterial agents.


Assuntos
Implantes Dentários , Titânio , Cálcio , Cerâmica/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Oxirredução , Fósforo , Propriedades de Superfície , Titânio/farmacologia
20.
Int J Mol Sci ; 21(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887491

RESUMO

Siloxanes are adaptable species that have found extensive applications as versatile materials for functionalising various surfaces and as building blocks for polymers and hybrid organic-inorganic systems. The primary goal of this review is to report on and briefly explain the most relevant recent developments related to siloxanes and their applications, particularly regarding surface modification and the synthesis of graft copolymers bearing siloxane or polysiloxane segments. The key strategies for both functionalisation and synthesis of siloxane-bearing polymers are highlighted, and the various trends in the development of siloxane-based materials and the intended directions of their applications are explored.


Assuntos
Técnicas Biossensoriais , Sistemas de Liberação de Medicamentos , Polímeros/química , Siloxanas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA